Moving Average Dieses Beispiel lehrt Sie, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen können. Ein gleitender Durchschnitt wird verwendet, um Unregelmäßigkeiten (Gipfel und Täler) zu glätten, um Trends leicht zu erkennen. 1. Zuerst schauen wir uns unsere Zeitreihen an. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Kann die Schaltfläche Datenanalyse nicht finden Hier klicken, um das Analysis ToolPak-Add-In zu laden. 3. Wählen Sie Moving Average und klicken Sie auf OK. 4. Klicken Sie in das Feld Eingabebereich und wählen Sie den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3. 8. Zeichnen Sie einen Graphen dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der bisherigen 5 Datenpunkte und der aktuelle Datenpunkt. Dadurch werden Gipfel und Täler geglättet. Die Grafik zeigt einen zunehmenden Trend. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da es nicht genügend vorherige Datenpunkte gibt. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Gipfel und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den tatsächlichen Datenpunkten. Moving Average - MA BREAKING DOWN Moving Average - MA Als SMA-Beispiel betrachten Sie eine Sicherheit mit den folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Ein 10-Tage-MA würde die Schlusskurse ausgleichen Für die ersten 10 Tage als erster Datenpunkt. Der nächste Datenpunkt würde den frühesten Preis fallen lassen, den Preis am Tag 11 hinzufügen und den Durchschnitt nehmen, und so weiter wie unten gezeigt. Wie bereits erwähnt, verbleiben MAs die derzeitige Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA ein viel größeres Maß an Verzögerung haben als ein 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge der MA zu verwenden hängt von den Handelszielen ab, wobei kürzere MAs für kurzfristige Handels - und längerfristige MAs für langfristige Investoren besser geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Handelssignale. MAs vermitteln auch eigene Handelssignale, oder wenn zwei Durchschnitte kreuzen. Eine aufsteigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend ist. Während eine abnehmende MA anzeigt, dass es sich in einem Abwärtstrend befindet. Ebenso wird die Aufwärtsbewegung mit einem bullish Crossover bestätigt. Die auftritt, wenn ein kurzfristiges MA über einen längerfristigen MA kreuzt. Abwärts-Impuls wird mit einer bärigen Überkreuzung bestätigt, die auftritt, wenn ein kurzfristiges MA unterhalb eines längerfristigen MA. moving-Durchschnittes von Zeitreihen-Daten (Beobachtungen gleichmäßig zeitlich beabstandet) von mehreren aufeinanderfolgenden Perioden übergeht. Angerufen, sich zu bewegen, weil es kontinuierlich neu berechnet wird, wenn neue Daten verfügbar werden, wird es fortgesetzt, indem man den frühesten Wert fällt und den letzten Wert addiert. Zum Beispiel kann der gleitende Durchschnitt von sechsmonatigen Verkäufen berechnet werden, indem man den Durchschnitt des Umsatzes von Januar bis Juni, dann den Durchschnitt der Verkäufe von Februar bis Juli, dann von März bis August und so weiter. Durchgehende Mittelwerte (1) reduzieren den Effekt von temporären Variationen in den Daten, (2) verbessern die Anpassung der Daten an eine Zeile (ein Prozess namens Glättung), um den Daten-Trend deutlicher zu zeigen und (3) einen Wert über oder unter dem Wert zu markieren Trend. Wenn du etwas mit sehr hoher Abweichung kalkst, kannst du das gleitende Durchschnitt herausfinden. Ich wollte wissen, was der gleitende Durchschnitt von den Daten war, also hätte ich ein besseres Verständnis dafür, wie wir es gemacht haben. Wenn Sie versuchen, herauszufinden, einige Zahlen, die sich ändern oft das Beste, was Sie tun können, ist die gleitenden Durchschnitt zu berechnen.
No comments:
Post a Comment